IRRATIONALITY MEASURE AND LOWER BOUNDS FOR π(x)

نویسندگان

  • STEVEN J. MILLER
  • MATTHEW SCHIFFMAN
  • BEN WIELAND
چکیده

One of the most important functions in number theory is π(x), the number of primes at most x. Many of the proofs of the infinitude of primes fall naturally into one of two categories. First, there are those proofs which provide a lower bound for π(x). A classic example of this is Chebyshev’s proof that there is a constant c such that cx/ log x ≤ π(x). Another method of proof is to deduce a contradiction from assuming there are only finitely many primes. One of the nicest such arguments is due to Furstenberg, who gives a topological proof of the infinitude of primes. As is often the case with arguments along these lines, we obtain no information about how rapidly π(x) grows. Sometimes proofs which at first appear to belong to one category in fact belong to another. For example, Euclid proved there are infinitely many primes by noting the following: if not, and if p1, . . . , pN is a complete enumeration, then either p1 · · · pN + 1 is prime or else it is divisible by a prime not in our list. A little thought shows this proof belongs to the first class, as it yields there are at least k primes at most 2 k , that π(x) ≥ log log(x). For the other direction, we examine a standard ‘special value’ proof; see [MT-B] for proofs of all the claims below. Consider the Riemann zeta function

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irrationality Measures of log 2 and π/√3

1. Irrationality Measures An irrationality measure of x ∈ R \Q is a number μ such that ∀ > 0,∃C > 0,∀(p, q) ∈ Z, ∣∣∣∣x− pq ∣∣∣∣ ≥ C qμ+ . This is a way to measure how well the number x can be approximated by rational numbers. The measure is effective when C( ) is known. We denote inf {μ | μ is an irrationality measure of x } by μ(x), and we call it the irrationality measure of x. By definition,...

متن کامل

A Geometric Proof that Is Irrational and a New Measure of Its Irrationality

1. INTRODUCTION. While there exist geometric proofs of irrationality for √2 [2], [27], no such proof for e, π , or ln 2 seems to be known. In section 2 we use a geometric construction to prove that e is irrational. The proof leads in section 3 to a new measure of irrationality for e, that is, a lower bound on the distance from e to a given rational number, as a function of its denominator. A co...

متن کامل

Estimating ‎U‎pper and Lower Bounds For Industry Efficiency With Unknown ‎Technology‎

With a brief review of the studies on the industry in Data Envelopment Analysis (DEA) framework, the present paper proposes inner and outer technologies when only some basic information is available about the technology. Furthermore, applying Linear Programming techniques, it also determines lower and upper bounds for directional distance function (DDF) measure, overall and allocative efficienc...

متن کامل

A Survey on Stability Measure of Networks

In this paper we discuss about tenacity and its properties in stability calculation. We indicate relationships between tenacity and connectivity, tenacity and binding number, tenacity and toughness. We also give good lower and upper bounds for tenacity.

متن کامل

Lower Bounds in Communication Complexity

The communication complexity of a function f(x, y) measures the number of bits that two players, one who knows x and the other who knows y, must exchange to determine the value f(x, y). Communication complexity is a fundamental measure of complexity of functions. Lower bounds on this measure lead to lower bounds on many other measures of computational complexity. This monograph survey lower bou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008